

 Previously: 3 algorithms for text classification
◦ Naive Bayes classifier
◦ K Nearest Neighbor classification
 Simple, expensive at test time, high variance, non-

linear
◦ Vector space classification using centroids and

hyperplanes that split them
 Simple, linear discriminant classifier; perhaps too

simple
 (or maybe not*)

 Today
◦ SVMs
◦ Some empirical evaluation and comparison
◦ Text-specific issues in classification

2

 Lots of possible solutions for a, b, c.
 Some methods find a separating

hyperplane, but not the optimal one
[according to some criterion of expected
goodness]

◦ E.g., perceptron

 Support Vector Machine (SVM) finds
an optimal* solution.
◦ Maximizes the distance between the

hyperplane and the “difficult points”
close to decision boundary

◦ One intuition: if there are no points
near the decision surface, then there
are no very uncertain classification
decisions

3

This line

represents the

decision

boundary:

ax + by − c = 0

Ch. 15

 If you have to place a fat separator between
classes, you have less choices, and so the
capacity of the model has been decreased

4

Sec. 15.1

 SVMs maximize the margin
around the separating
hyperplane.
 A.k.a. large margin

classifiers

 The decision function is fully
specified by a subset of
training samples, the
support vectors.

 Solving SVMs is a quadratic
programming problem

 Seen by many as the most
successful current text
classification method*

5

Support vectors

Maximizes
margin

*but other discriminative methods

often perform very similarly

Sec. 15.1

Narrower
margin

 w: decision hyperplane normal vector
 xi: data point i
 yi: class of data point i (+1 or -1) NB: Not

1/0

 Classifier is: f(xi) = sign(wTxi +
b)

 Functional margin of xi is: yi (w
Txi + b)

◦ But note that we can increase this margin simply by scaling w,
b….

 Functional margin of dataset is twice the
minimum functional margin for any point
◦ The factor of 2 comes from measuring the whole

width of the margin

6

Sec. 15.1

 Distance from example to the separator is

 Examples closest to the hyperplane are support vectors.

 Margin ρ of the separator is the width of separation between
support vectors of classes.

7

w

xw b
yr

T +
=

r

ρx

x′

w

Derivation of finding r:

Dotted line x’−x is perpendicular to

decision boundary so parallel to w.

Unit vector is w/|w|, so line is

rw/|w|.

x’ = x – yrw/|w|.

x’ satisfies w
T
x’+b = 0.

So w
T
(x –yrw/|w|) + b = 0

Recall that |w| = sqrt(w
T
w).

So w
T
x –yr|w| + b = 0

So, solving for r gives:

r = y(w
T
x + b)/|w|

Sec. 15.1

 Assume that all data is at least distance 1 from the hyperplane,
then the following two constraints follow for a training set {(xi

,yi)}

 For support vectors, the inequality becomes an equality

 Then, since each example‟s distance from the hyperplane is

 The margin is:

8

wTxi + b ≥ 1 if yi = 1

wTxi + b ≤ −1 if yi = −1

w

2
=r

w

xw b
yr

T +
=

Sec. 15.1

 Hyperplane

wT x + b = 0

 Extra scale constraint:

mini=1,…,n |wTxi + b| = 1

 This implies:

wT(xa–xb) = 2

ρ = ||xa–xb||2 = 2/||w||2

9

wT x + b = 0

wTxa + b = 1

wTxb + b = -1

ρ

Sec. 15.1

 Then we can formulate the quadratic optimization
problem:

 A better formulation (min ||w|| = max 1/ ||w||):

10

Find w and b such that

is maximized; and for all {(xi , yi)}

wTxi + b ≥ 1 if yi=1; wTxi + b ≤ -1 if yi = -1

w

2
=r

Find w and b such that

Φ(w) =½ wTw is minimized;

and for all {(xi ,yi)}: yi (wTxi + b) ≥ 1

Sec. 15.1

 The classifier is a separating hyperplane.

 The most “important” training points are the support vectors;
they define the hyperplane.

 Quadratic optimization algorithms can identify which training
points xi are support vectors with non-zero Lagrangian
multipliers αi.

 Both in the dual formulation of the problem and in the
solution, training points appear only inside inner products:

11

Find α1…αN such that

Q(α) =Σαi - ½ΣΣαiαjyiyjxi
Txj is maximized and

(1) Σαiyi = 0

(2) 0 ≤ αi ≤ C for all αi

f(x) = Σαiyixi
Tx + b

Sec. 15.2.1

 Datasets that are linearly separable (with some noise) work
out great:

 But what are we going to do if the dataset is just too hard?

 How about … mapping data to a higher-dimensional space:

12

0

x2

x

0 x

0 x

Sec. 15.2.3

 General idea: the original feature space can
always be mapped to some higher-
dimensional feature space where the training
set is separable:

13

Φ: x → φ(x)

Sec. 15.2.3

 The linear classifier relies on an inner product between vectors
K(xi,xj)=xi

Txj

 If every datapoint is mapped into high-dimensional space via some
transformation Φ: x → φ(x), the inner product becomes:

K(xi,xj)= φ(xi)
Tφ(xj)

 A kernel function is some function that corresponds to an inner
product in some expanded feature space.

 Example:

2-dimensional vectors x=[x1 x2]; let K(xi,xj)=(1 + xi
Txj)

2
,

Need to show that K(xi,xj)= φ(xi)
Tφ(xj):

K(xi,xj)=(1 + xi
Txj)

2
,= 1+ xi1

2xj1
2 + 2 xi1xj1 xi2xj2+ xi2

2xj2
2 + 2xi1xj1

+ 2xi2xj2=

= [1 xi1
2 √2 xi1xi2 xi2

2 √2xi1 √2xi2]
T [1 xj1

2 √2 xj1xj2 xj2
2

√2xj1 √2xj2]

= φ(xi)
Tφ(xj) where φ(x) = [1 x1

2 √2 x1x2 x2
2 √2x1 √2x2]

14

Sec. 15.2.3

 Why use kernels?
◦ Make non-separable problem separable.
◦ Map data into better representational space

 Common kernels
◦ Linear
◦ Polynomial K(x,z) = (1+xTz)d

 Gives feature conjunctions

◦ Radial basis function (infinite dimensional space)

 Haven‟t been very useful in text
classification

15

Sec. 15.2.3

 Recall: Fraction of docs in class i
classified correctly:

 Precision: Fraction of docs
assigned class i that are actually
about class i:

 Accuracy: (1 - error rate) Fraction
of docs classified correctly:

16

c ii
i

å

c ij
i

å
j

å

c ii

c ji
j

å

c ii

c ij
j

å

Sec. 15.2.4

 If we have more than one class, how do we
combine multiple performance measures into
one quantity?

 Macroaveraging: Compute performance for
each class, then average.

 Microaveraging: Collect decisions for all
classes, compute contingency table, evaluate.

17

Sec. 15.2.4

Truth:

yes

Truth:

no

Classifi

er: yes

10 10

Classifi

er: no

10 970

Truth:

yes

Truth:

no

Classifi

er: yes

90 10

Classifi

er: no

10 890

Truth:

yes

Truth:

no

Classifier:

yes

100 20

Classifier:

no

20 1860

18

Class 1 Class 2 Micro Ave. Table

 Macroaveraged precision: (0.5 + 0.9)/2 = 0.7

 Microaveraged precision: 100/120 = .83

 Microaveraged score is dominated by score

on common classes

Sec. 15.2.4

P. Jackson and I. Moulinier. 2002. Natural Language Processing for Online
Applications

 “There is no question concerning the commercial value
of being able to classify documents automatically by
content. There are myriad potential applications of such
a capability for corporate intranets, government
departments, and Internet publishers”

 “Understanding the data is one of the keys to successful
categorization, yet this is an area in which most
categorization tool vendors are extremely weak. Many
of the „one size fits all‟ tools on the market have not
been tested on a wide range of content types.”

19

Sec. 15.3

 Gee, I‟m building a text classifier for real,
now!

 What should I do?

 How much training data do you have?
◦ None

◦ Very little

◦ Quite a lot

◦ A huge amount and its growing

20

Sec. 15.3.1

 No training data, adequate editorial staff?
 Never forget the hand-written rules solution!

◦ If (wheat or grain) and not (whole or bread) then
 Categorize as grain

 In practice, rules get a lot bigger than this
◦ Can also be phrased using tf or tf.idf weights

 With careful crafting (human tuning on
development data) performance is high:
◦ Construe: 94% recall, 84% precision over 675

categories (Hayes and Weinstein 1990)

 Amount of work required is huge
◦ Estimate 2 days per class … plus maintenance

21

Sec. 15.3.1

 If you‟re just doing supervised classification,
you should stick to something high bias
◦ There are theoretical results that Naïve Bayes

should do well in such circumstances (Ng and
Jordan 2002 NIPS)

 The interesting theoretical answer is to
explore semi-supervised training methods:
◦ Bootstrapping, EM over unlabeled documents, …

 The practical answer is to get more labeled
data as soon as you can
◦ How can you insert yourself into a process where

humans will be willing to label data for you??

22

Sec. 15.3.1

 Perfect!

 We can use all our clever classifiers

 Roll out the SVM!

 But if you are using an SVM/NB etc., you should
probably be prepared with the “hybrid” solution
where there is a Boolean overlay
◦ Or else to use user-interpretable Boolean-like models

like decision trees

◦ Users like to hack, and management likes to be able to
implement quick fixes immediately

23

Sec. 15.3.1

 This is great in theory for doing accurate
classification…

 But it could easily mean that expensive
methods like SVMs (train time) or kNN (test
time) are quite impractical

 Naïve Bayes can come back into its own
again!
◦ Or other advanced methods with linear training/test

complexity like regularized logistic regression
(though much more expensive to train)

24

Sec. 15.3.1

 With enough data the
choice of classifier may
not matter much, and
the best choice may be
unclear
◦ Data: Brill and Banko on

context-sensitive spelling
correction

 But the fact that you
have to keep doubling
your data to improve
performance is a little
unpleasant

25

Sec. 15.3.1

 A few (well separated ones)?
◦ Easy!

 A zillion closely related ones?
◦ Think: Yahoo! Directory, Library of Congress

classification, legal applications
◦ Quickly gets difficult!
 Classifier combination is always a useful technique
 Voting, bagging, or boosting multiple classifiers

 Much literature on hierarchical classification
 Mileage fairly unclear, but helps a bit (Tie-Yan Liu et al.

2005)

 May need a hybrid automatic/manual solution

26

Sec. 15.3.2

 Aim to exploit any domain-specific useful
features that give special meanings or that
zone the data
◦ E.g., an author byline or mail headers

 Aim to collapse things that would be treated
as different but shouldn‟t be.
◦ E.g., part numbers, chemical formulas

 Does putting in “hacks” help?
◦ You bet!
 Feature design and non-linear weighting is very

important in the performance of real-world systems

27

Sec. 15.3.2

 You can get a lot of value by differentially
weighting contributions from different document
zones:

 That is, you count as two instances of a word
when you see it in, say, the abstract
◦ Upweighting title words helps (Cohen & Singer 1996)

 Doubling the weighting on the title words is a good rule of
thumb

◦ Upweighting the first sentence of each paragraph helps
(Murata, 1999)

◦ Upweighting sentences that contain title words helps (Ko
et al, 2002)

28

Sec. 15.3.2

1. Have a completely separate set of
features/parameters for different zones like
the title

2. Use the same features (pooling/tying their
parameters) across zones, but upweight the
contribution of different zones

 Commonly the second method is more
successful: it costs you nothing in terms of
sparsifying the data, but can give a very
useful performance boost

 Which is best is a contingent fact about the data

29

Sec. 15.3.2

 Text Summarization: Process of extracting
key pieces from text, normally by features on
sentences reflecting position and content

 Much of this work can be used to suggest
weightings for terms in text categorization
 See: Kolcz, Prabakarmurthi, and Kalita, CIKM 2001:

Summarization as feature selection for text
categorization

◦ Categorizing purely with title,
◦ Categorizing with first paragraph only
◦ Categorizing with paragraph with most keywords
◦ Categorizing with first and last paragraphs, etc.

30

Sec. 15.3.2

 As always, it‟s hard to tell, and empirical
evaluation is normally the gold standard

 But note that the role of tools like stemming
is rather different for TextCat vs. IR:
◦ For IR, you often want to collapse forms of the verb

oxygenate and oxygenation, since all of those
documents will be relevant to a query for
oxygenation

◦ For TextCat, with sufficient training data, stemming
does no good. It only helps in compensating for
data sparseness (which can be severe in TextCat
applications). Overly aggressive stemming can
easily degrade performance.

31

Sec. 15.3.2

 Not just accuracy; in the real world, there are
economic measures:
◦ Your choices are:
 Do no classification
 That has a cost (hard to compute)

 Do it all manually
 Has an easy-to-compute cost if doing it like that now

 Do it all with an automatic classifier
 Mistakes have a cost

 Do it with a combination of automatic classification
and manual review of uncertain/difficult/”new” cases

◦ Commonly the last method is most cost efficient
and is adopted

32

 Categories change over time

 Example: “president of the united states”
◦ 1999: clinton is great feature

◦ 2010: clinton is bad feature

 One measure of a text classification system is
how well it protects against concept drift.
◦ Favors simpler models like Naïve Bayes

 Feature selection: can be bad in protecting
against concept drift

33

 Support vector machines (SVM)
◦ Choose hyperplane based on support vectors
 Support vector = “critical” point close to decision boundary

◦ (Degree-1) SVMs are linear classifiers.
◦ Kernels: powerful and elegant way to define similarity

metric
◦ Perhaps best performing text classifier
 But there are other methods that perform about as well as

SVM, such as regularized logistic regression (Zhang & Oles
2001)

◦ Partly popular due to availability of good software
 SVMlight is accurate and fast – and free (for research)

 Now lots of good software: libsvm, TinySVM, ….

 Comparative evaluation of methods

 Real world: exploit domain specific structure!

34

